Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19580, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949952

RESUMO

The removal of toxic dye pigments from the environment is of utmost importance since even trace amounts of these pollutants can lead to harmful impacts on ecosystems. Heterogeneous photocatalysis is a potential technique for eliminating microbiological, inorganic, and organic pollutants from wastewater. Here, we report the band gap alteration of ZnO by making its composites with CuSe to enhance photocatalytic activity. The purpose is to develop metal oxide nanocomposites (ZnO/CuSe) as an effective and efficient material for the photodegradation of methyl blue. The photocatalysts, ZnO nanorods, CuSe, and ZnO/CuSe nanocomposites of different weight ratios were synthesized by the simple and cost-effective technique of precipitation. UV-Vis spectra verified that the ZnO/CuSe photocatalyst improved absorption in the visible region. The optical bandgap of ZnO/CuSe nanocomposites reduced from 3.37 to 2.68 eV when CuSe concentration increased from 10 to 50%. ZnO/CuSe composites demonstrated better photocatalytic activity than ZnO when exposed to UV-visible light. The pure ZnO nanorods could absorb UV light and the nanocomposites could absorb visible light only; this was attributed to the transfer of excited high-energy electrons from ZnO to CuSe.

3.
Environ Res ; 238(Pt 1): 117133, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729960

RESUMO

Removal of methyl iodide (CH3I) from the air present within nuclear facilities is a critical issue. In case of any nuclear accident, there is a great need to mitigate the radioactive organic iodide immediately as it accumulates in human bodies, causing severe consequences. Current research focuses on removing organic iodides, for which the surface of activated carbon (AC) was modified by impregnating it with different metals individually, i.e. Ag, Ni, Zn, Cu and with the novel combination of these four metals (AZNC). After the impregnation of metals, triethylenediamine (TEDA) was coated on metal impregnated activated carbon (IAC) surface. The adsorption capacity of the combination of four metals IAC was found to be 276 mg/g as the maximum for the trapping of CH3I. Whereas TEDA-metal impregnation on ACs enhanced the removal efficiency of CH3I up to 352 mg/g. After impregnation, adsorption capacity of AZNC and AZNCT is significantly higher as compared to AC. According to the finding, t5% of AZNCT IAC is 46 min, which is considerably higher than the t5% of other tested adsorbents. According to isotherm fitting data, Langmuir isotherm was found superior for describing CH3I sorption onto AC and IACs. Kinetics study shows that pseudo second order model represented the sorption of CH3I more accurately than the pseudo first order. Thermodynamic studies gave negative value of ΔG which shows that the reaction is spontaneous in nature. Based on the findings, AZNCT IAC appears to have a great potential for air purification applications in order to obtain clean environment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Humanos , Metais , Piperazinas , Adsorção , Cinética , Concentração de Íons de Hidrogênio
4.
ACS Omega ; 8(33): 30095-30108, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636959

RESUMO

The degradation of organic dye pollutants is a critical environmental issue that has garnered significant attention in recent years. To address this problem, we investigated the potential of CaCrO4 chromite (CCO) as a photocatalyst for the degradation of cationic and anionic dye solutions under sunlight irradiation. CaCrO4 was synthesized via a sol-gel auto-combustion route and sintered at 900 °C. The Rietveld refined XRD profile confirmed the zircon-type structure of CaCrO4 crystallized in the tetragonal unit cell with I41/amd space group symmetry. The surface morphology of the sample was investigated by field emission scanning electron microscopy (FESEM), which revealed the polyhedral texture of the grains. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) studies were carried out to analyze the elemental composition and chemical states of the ions present in the compound. Fourier transform infrared (FT-IR) spectroscopy analysis revealed the vibrational modes corresponding to the tetrahedral and dodecahedral metal oxide bonds. The optical band gap was approximated to be in the range of 1.928 eV by using the Tauc relation. The CaCrO4 catalyst with different contents (5, 20, 35, and 50 mg) was investigated for its photocatalytic performance for the degradation of RhB dye solution under sunlight irradiation using a UV-Vis spectrometer over the experimental wavelength range of 450-600 nm. The degradation efficacy increased from 70.630 to 93.550% for 5-35 mg and then decreased to 68.720% for 50 mg in 140 min under visible light illumination. The comparative study demonstrates that a higher degradation rate was achieved for cationic than anionic dyes in the order RhB > MB > MO. The highest deterioration (93.80%) was achieved for the RhB dye in 140 min. Equilibrium and kinetic studies showed that the adsorption process followed the Langmuir isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of 21.125 mg/g was observed for the catalyst concentration of 35 mg. From the cyclic test, it has been observed that the synthesized photocatalyst is structurally and morphologically stable and reusable. The radical trapping experiment demonstrated that superoxide and hydroxyl radicals were the primary species engaged in the photodegradation process. A possible mechanism for the degradation of RhB has been proposed. Hence, we conclude that CaCrO4 can be used as an efficient photocatalyst for the remediation of organic dye pollutants from the environment.

5.
Environ Res ; 212(Pt D): 113540, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643310

RESUMO

Drinking fluoride (F-)-contaminated water (>1.5 mg L-1) causes severe dental and skeletal disorders. In the central province of Pakistan, ∼20 times higher levels of F- in the drinking groundwater (compared with the 1.5 mg L-1 permissible limit of the World Health Organization) are triggering bone abnormalities in teenagers. In this study, we demonstrated the potential of pinecone-derived biochar (pristine) impregnated with Fe- and Al-salts (engineered) to defluoridate water. Batch mode adsorption experiments were carried out under variable conditions of solution pH, F- initial concentration, adsorbent dose, and contact time. The engineered biochars resulted in greater adsorption than that of pristine biochar. Specifically, the AlCl3-modified biochar exhibited a maximum adsorption capacity of 14.07 mg g-1 in spiked water and 13.07 mg g-1 in in-situ groundwater. The equilibrium isothermal and kinetic models predicted monolayer, cooperative, and chemisorption types of the adsorption process. The chemical interaction and outer-sphere complexation of F- with Al, Na, and H elements were further confirmed by the post-adsorption analysis of the AlCl3-modified biochar by FTIR and XRD. The AlCl3-modified biochar resulted in 87.13% removal of F- from the in-situ F--contaminated groundwater, even in the presence of naturally occurring competing ions (such as Cl-, HCO3-, SO42-, and NO3-). We conclude that the AlCl3-modified biochar derived from pinecone could be a promising cost-effective adsorbent for the defluoridation of water.


Assuntos
Fluoretos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Cinética , Água , Poluentes Químicos da Água/análise
6.
Saudi J Biol Sci ; 28(11): 6063-6068, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764739

RESUMO

OBJECTIVES: This study is aimed to synthesis and evaluate PEGylated Eu enabled spherical alumina submicron particles (s-Al2O3:Eu) for potential theranostic applications. METHODS: This study is bisected into two parts, a) synthesis of PEGylated Eu enabled spherical alumina submicron particles (s-Al2O3:Eu), and b) characterization of the synthesized particles to determine their efficacy for potential theranostic applications.The synthesis of the particles involved the following steps. In the first step, s-Al2O3:Eu is synthesized using solvothermal synthesis. In the next step, the particles undergo post synthesis water-ethanol treatment and calcination. The surface of the synthesized s-Al2O3:Eu particles is then coated by PEG to increase its biocompatibility.Once the particles are prepared, they are characterized using different techniques. The microstructure, composition and structure of the particles is characterized using SEM, EDX and XRD techniques. The detection of the functional groups is done using FTIR analysis. The photoluminescence emission spectrum of s-Al2O3:Eu is studied using Photoluminescence spectroscopy. And, finally, the biocompatibility is studied using MTT assay on RD cell lines. RESULTS: The microstructure analysis, from the micrographs obtained from SEM, shows that the spherical alumina particles have a submicron size with narrow size distribution. The compositional analysis, as per EDX, confirms the presence of Oxygen, Aluminum and Europium in the particles. While, XRD analysis of s-Al2O3:Eu confirms the formation of alpha alumina phase after calcination at 700 °C. Emission peaks, obtained by Photoluminescence emission spectroscopy, show that the optimum emission intensities correspond to the transition from 5D0 to 7Fj orbital of Eu+3. FTIR analysis confirms the successful coating of PEG. Finally, a cell viability of more than 86% is observed when the biocompatibility of the particles is studied, using MTT assay on RD cell lines. CONCLUSIONS: s-Al2O3:Eu with narrow distribution are successfully synthesized. Structural and functional characterizations support the suitability of s-Al2O3:Eu as potential theranostic agent.

7.
Antibiotics (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34438989

RESUMO

Cocrystallization is a promising approach to alter physicochemical properties of active pharmaceutical ingredients (hereafter abbreviated as APIs) bearing poor profile. Nowadays pharmaceutical industries are focused on preparing drug-drug cocrystals of APIs that are often prescribed in combination therapies by physicians. Physicians normally prescribe antibiotic with an analgesic/antipyretic drug to combat several ailments in a better and more efficient way. In this work, azithromycin (AZT) and paracetamol (PCM) cocrystals were prepared in 1:1 molar ratio using slow solvent evaporation method. The cocrystals were characterized by Fourier transform infrared (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), thermo gravimetric analysis (TGA) and high-performance liquid chromatography (HPLC). Vibrational spectroscopy and DSC confirmed that both APIs interact physically and showed chemical compatibility, while PXRD pattern of the starting material and products revealed that cocrystal have in a unique crystalline phase. The degree of hydration was confirmed by TGA analysis and result indicates monohydrate cocrystal formation. The HPLC analysis confirmed equimolar ratio of AZT:PCM in the cocrystal. The in vitro dissolution rate, saturation solubility, and antimicrobial activity were evaluated for AZT dihydrate and the resulting cocrystals. The cocrystals exhibited better dissolution rate, solubility and enhanced biological activities.

8.
Environ Sci Pollut Res Int ; 27(35): 44342-44354, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32767007

RESUMO

The study endeavored to analyze the risk perception, sense of place, and disaster preparedness in response to landslide disaster-prone mountain areas of Gilgit-Baltistan, Pakistan. To this end, we surveyed 315 rural residents of two vulnerable landslide districts (Hunza and Nagar) of Gilgit-Baltistan. To explore the relationships between the dimensions of risk perception, sense of place, and disaster preparedness, we used partial least squares (PLS) structural equation modeling (SEM) to test the hypotheses. The results derived from PLS-SEM have implied that there is a significant negative relationship between risk perception (apprehension and unidentified) with a sense of place (bond with society and place dependence). It was observed that the residents usually overestimate the risks of disasters due to their limited scientific knowledge regarding disaster occurrence, which reduces their dependencies on the place. We revealed that disaster preparedness enhances the place attachment and reduces the apprehension of landslides in the study area. This study devotes to government and relevant agencies to devise policies that can help relocate the vulnerable rural settlements, develop, and educate the masses on disaster mitigation and prevention strategies, and help prepare a suitable landslide management plan.


Assuntos
Planejamento em Desastres , Desastres , Deslizamentos de Terra , Humanos , Paquistão , População Rural , Inquéritos e Questionários
9.
Int J Biol Macromol ; 162: 175-187, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32562726

RESUMO

Inflammation is a key challenge in the treatment of chronic diseases. Spurred by topical advancement in polymer chemistry and drug delivery, hydrogels that release a drug in temporal, spatial and dosage controlled fashion have been trendy. This research focused on the fabrication of hydrogels with controlled drug release properties to control inflammation. Chitosan and polyvinyl pyrrolidone were used as base polymers and crosslinked with epichlorohydrin to form hydrogel films by solution casting technique. Prepared hydrogels were analyzed by swelling analysis in deionized water, buffer and electrolyte solutions and gel fraction. Functional groups confirmation and development of new covalent and hydrogen bonds, thermal stability (28.49%) and crystallinity were evaluated by FTIR, TGA and WAXRD, respectively. Rheological properties including gel strength and yield stress, elasticity (2309 MPa), porosity (75%) and hydrophilicity (73°) of prepared hydrogels were also evaluated. In vitro studies confirmed that prepared hydrogels have good biodegradability, excellent antimicrobial property and admirable cytotoxicity. Drug release profile (87.56% in 130 min) along with the drug encapsulation efficiency (84%) of prepared hydrogels was also studied. These results paved the path towards the development of hydrogels that can release the drugs with desired temporal patterns.


Assuntos
Artemia/efeitos dos fármacos , Quitosana/química , Diclofenaco/química , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/efeitos dos fármacos , Hidrogéis/química , Animais , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Elasticidade , Epicloroidrina/química , Hidrogéis/síntese química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Inflamação , Microscopia Eletrônica de Varredura , Porosidade , Povidona/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...